Study on oligomerization of glutamate decarboxylase from Lactobacillus brevis using asymmetrical flow field-flow fractionation (AF4) with light scattering techniques

利用不对称流场流分离(AF4)和光散射技术研究短乳杆菌谷氨酸脱羧酶的寡聚化

阅读:9
作者:Jaeyeong Choi, Seungho Lee, Javier A Linares-Pastén, Lars Nilsson

Abstract

In this work, asymmetrical flow field-flow fractionation (AF4) coupled with UV/Vis, multi-angle light scattering (MALS), and differential refractive index (dRI) detectors (AF4-UV-MALS-dRI) was employed for analysis of glutamate decarboxylase (LbGadB) from Lactobacillus brevis (L. brevis). AF4 provided molecular weight (MW) (or size)-based separation of dimer, hexamer, and aggregates of LbGadB. The effect of pH on oligomerization of LbGadB was investigated, and then AF4 results were compared to those from molecular modeling. The MWs measured by AF4-UV-MALS-dRI for dimeric and hexameric forms of LbGadB were 110 and 350 kDa, respectively, which are in good agreements with those theoretically calculated (110 and 330 kDa). The molecular sizes determined by AF4-UV-MALS-dRI were also in good agreement with those obtained from molecular modeling (6 and 10 nm, respectively, for dimeric and hexameric from AF4-UV-MALS-dRI and 6.4 × 7.6 and 7.6 × 13.1 nm from molecular modeling). The effects of temperature, salt type, and salt concentration on oligomerization of LbGadB were also investigated using dynamic light scattering (DLS). It was found that the hexameric form of LbGadB was most stable at pH 6 and in presence of NaCl or KCl. The results indicate that AF4, in combination of various online detectors mentioned above, provides an effective tool for monitoring of oligomerization of LbGadB under different conditions, such as temperature, pH, type of salts, and salt concentrations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。