3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles

用于自动驾驶汽车智能轮胎的 3D 打印石墨烯自供电应变传感器

阅读:5
作者:Deepam Maurya, Seyedmeysam Khaleghian, Rammohan Sriramdas, Prashant Kumar, Ravi Anant Kishore, Min Gyu Kang, Vireshwar Kumar, Hyun-Cheol Song, Seul-Yi Lee, Yongke Yan, Jung-Min Park, Saied Taheri, Shashank Priya3

Abstract

The transition of autonomous vehicles into fleets requires an advanced control system design that relies on continuous feedback from the tires. Smart tires enable continuous monitoring of dynamic parameters by combining strain sensing with traditional tire functions. Here, we provide breakthrough in this direction by demonstrating tire-integrated system that combines direct mask-less 3D printed strain gauges, flexible piezoelectric energy harvester for powering the sensors and secure wireless data transfer electronics, and machine learning for predictive data analysis. Ink of graphene based material was designed to directly print strain sensor for measuring tire-road interactions under varying driving speeds, normal load, and tire pressure. A secure wireless data transfer hardware powered by a piezoelectric patch is implemented to demonstrate self-powered sensing and wireless communication capability. Combined, this study significantly advances the design and fabrication of cost-effective smart tires by demonstrating practical self-powered wireless strain sensing capability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。