Hot Fingers: Individually Addressable Graphene-Heater Actuated Liquid Crystal Grippers

热手指:可单独寻址的石墨烯加热器驱动液晶夹持器

阅读:6
作者:Laura S van Hazendonk, Zafeiris J Khalil, Wilko van Grondelle, Levina E A Wijkhuijs, Ingeborg Schreur-Piet, Michael G Debije, Heiner Friedrich

Abstract

Liquid crystal-based actuators are receiving increased attention for their applications in wearables and biomedical or surgical devices, with selective actuation of individual parts/fingers still being in its infancy. This work presents the design and realization of two gripper devices with four individually addressable liquid-crystal network (LCN) actuators thermally driven via printed graphene-based heating elements. The resistive heat causes the all-organic actuator to bend due to anisotropic volume expansions of the splay-aligned sample. A heat transfer model that includes all relevant interfaces is presented and verified via thermal imaging, which provides good estimates of dimensions, power production, and resistance required to reach the desired temperature for actuation while maintaining safe electrical potentials. The LCN films displace up to 11 mm with a bending force of 1.10 mN upon application of 0-15 V potentials. The robustness of the LCN finger is confirmed by repetitive on/off switching for 500 cycles. Actuators are assembled into two prototypes able to grip and lift objects of small weights (70-100 mg) and perform complex actions by individually controlling one of the device's fingers to grip an additional object. Selective actuation of parts in soft robotic devices will enable more complex motions and actions to be performed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。