CXCL12 enhances human neural progenitor cell survival through a CXCR7- and CXCR4-mediated endocytotic signaling pathway

CXCL12 通过 CXCR7 和 CXCR4 介导的内吞信号通路增强人类神经祖细胞存活率

阅读:5
作者:Bing Zhu, Dongsheng Xu, Xiaobei Deng, Qiang Chen, Yunlong Huang, Hui Peng, Yuju Li, Beibei Jia, Wallace B Thoreson, Wenjun Ding, Jianqing Ding, Lixia Zhao, Yi Wang, Kristin Leland Wavrin, Shumin Duan, Jialin Zheng

Abstract

Chemokine CXCL12 is widely expressed in the central nervous system and essential for the proper functioning of human neural progenitor cells (hNPCs). Although CXCL12 is known to function through its receptor CXCR4, recent data have suggested that CXCL12 binds to chemokine receptor CXCR7 with higher affinity than to CXCR4. However, little is known about the function of CXCR7 in hNPCs. Using a primary hNPC culture system, we demonstrated that CXCL12 promotes hNPC survival in the events of camptothecin-induced apoptosis or growth factor deprivation, and that this effect requires both CXCR7 and CXCR4. Through fluorescence-activated cell sorting analysis and immunocytochemistry, we determined that CXCR7 is mainly localized in the early endosome, while CXCR4 is more broadly expressed at the cell surface and on both early and recycling endosomes. Furthermore, we found that endocytosis is required for the prosurvival function of CXCL12. Using dual-color total internal reflection fluorescence microscopy and immunoprecipitation, we demonstrated that CXCR7 quickly trafficks to plasma membrane in mediating CXCL12 endocytosis and colocalizes with CXCR4 after CXCL12 treatment. Investigating the molecular mechanisms, we found that ERK1/2 endocytotic signaling pathway is essential for hNPC survival upon apoptotic challenges. Consistent with these findings, a significantly higher number of apoptotic NPCs were found in the developing brain of CXCR7 knockout mice. In conclusion, CXCL12 protects hNPCs from apoptotic challenges through CXCR7- and CXCR4-mediated endocytotic signaling. Since survival of hNPCs is important for neurogenesis, CXCR7 may become a new therapeutic target to properly regulate critical processes of brain development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。