Integrating 16S rDNA and metabolomics to uncover the therapeutic mechanism of electroacupuncture in type 2 diabetic rats

结合16S rDNA和代谢组学揭示电针对2型糖尿病大鼠的治疗机制

阅读:5
作者:Zhang Yue #, Wang Xiang #, Deng Duping #, Gong Yuanyuan, Chen Xuanyi, Li Juan, Hong Xiaojuan

Conclusion

EA effectively improved glucose metabolism in T2DM rats. The hypoglycemic effects of EA were associated with the regulation of gut microbiota, SCFAs, and GLP-1.

Methods

Forty Sprague-Dawley (SD) rats were randomly assigned to five groups (n = 8/group) using a random number table: normal control, T2DM model, electroacupuncture (EA), EA + antibiotics (EA + A), and antibiotics (A). The normal rats received a standard diet and saline gavage, while the other groups were fed a high-fat diet and emulsion. The EA + A and A groups received additional antibiotic solution gavage. The normal, model, and A groups were immobilized and restrained for 30 min, six times per week, for 4 weeks. The EA and EA + A groups received EA treatment at specific acupoints for 30 min, six times per week, for 4 weeks. EA parameters were continuous waves at 10 Hz and 1-2 mA. During the intervention, water and food consumption, body weight, fasting blood glucose (FBG), and oral glucose tolerance test (OGTT) were monitored. Pancreatic tissue was examined using hematoxylin and eosin (H&E) staining. Fecal microbial communities were analyzed by 16S rDNA sequencing, and short-chain fatty acids (SCFAs) were measured using gas chromatography-mass spectrometry (GC-MS). Serum levels of fasting insulin (FINS), glycated hemoglobin (HbA1c), and glucagon-like peptide-1 (GLP-1) were determined using enzyme-linked immunosorbent assay (ELISA).

Objective

This study aimed to investigate the impact of electroacupuncture (EA) on blood glucose levels, gut microbiota, short-chain fatty acids (SCFAs), and glucagon-like peptide-1 (GLP-1) in a rat model of type 2 diabetes mellitus (T2DM).

Results

EA significantly improved daily water intake, food consumption, and body weight in T2DM rats (p < 0.01). EA also reduced FBG, the area under the curve of the OGTT, FINS, and homeostasis model assessment of insulin resistance (HOMA-IR) in T2DM rats (p < 0.05). The ELISA results showed a lower concentration of HbA1c in the EA group (p < 0.05). EA improved the overall morphology and area of pancreatic islets, increased the number of β-cell nuclei, and alleviated β-cell hypertrophy. The abundance of operational taxonomic units (OTUs) in the EA group increased than the model group (p < 0.05), and EA upregulated the Shannon, Chao1, and Ace indices (p < 0.05). EA increased the concentrations of acetic acid, butyric acid, and GLP-1 (p < 0.05). Correlation analysis revealed negative associations between Lactobacillaceae (R = -0.81, p = 0.015) and Lactobacillus (R = -0.759, p = 0.029) with FBG. Peptostreptococcaceae and Romboutsia were negatively correlated with HbA1c (R = -0.81, p = 0.015), while Enterobacteriaceae was positively correlated with OGTT (R = 0.762, p = 0.028). GLP-1 was positively correlated with acetic acid (R = 0.487, p = 0.001), butyric acid (R = 0.586, p = 0.000), isovaleric acid (R = 0.374, p = 0.017), valeric acid (R = 0.535, p = 0.000), and caproic acid (R = 0.371, p = 0.018). Antibiotics disrupted the intestinal microbiota structure and weakened the therapeutic effects of EA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。