Seed Priming with Carbon Nanomaterials Improves the Bioactive Compounds of Tomato Plants under Saline Stress

用碳纳米材料进行种子引发可改善盐胁迫下番茄植株的生物活性化合物

阅读:8
作者:Yolanda González-García, Elsy Rubisela López-Vargas, Marissa Pérez-Álvarez, Gregorio Cadenas-Pliego, Adalberto Benavides-Mendoza, Jesús Valdés-Reyna, Fabián Pérez-Labrada, Antonio Juárez-Maldonado

Abstract

The consumption of food with a high content of bioactive compounds is correlated with the prevention of chronic degenerative diseases. Tomato is a food with exceptional nutraceutical value; however, saline stress severely affects the yield, the quality of fruits, and the agricultural productivity of this crop. Recent studies have shown that seed priming can mitigate or alleviate the negative effects caused by this type of stress. However, the use of carbon nanomaterials (CNMs) in this technique has not been tested for this purpose. In the present study, the effects of tomato seed priming with carbon nanotubes (CNTs) and graphene (GP) (50, 250, and 500 mg L-1) and two controls (not sonicated and sonicated) were evaluated based on the content of photosynthetic pigments in the leaves; the physicochemical parameters of the fruits; and the presence of enzymatic and non-enzymatic antioxidant compounds, carotenoids, and stress biomarkers such as hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the leaves and fruits of tomato plants without saline stress and with saline stress (50 mM NaCl). The results show that saline stress in combination with CNTs and GP increased the content of chlorophylls (9.1-21.7%), ascorbic acid (19.5%), glutathione (≈13%), proteins (9.9-11.9%), and phenols (14.2%) on the leaves. The addition of CNTs and GP increased the activity of enzymes (CAT, APX, GPX, and PAL). Likewise, there was also a slight increase in the content of H2O2 (by 20.5%) and MDA (3.7%) in the leaves. Salinity affected the quality of tomato fruits. The physico-chemical parameters and bioactive compounds in both the stressed and non-stressed tomato plants were modified with the addition of CNTs and GP. Higher contents of total soluble solids (25.9%), phenols (up to 144.85%), flavonoids (up to 37.63%), ascorbic acid (≈28%), and lycopene (12.4-36.2%) were observed. The addition of carbon nanomaterials by seed priming in tomato plants subjected to saline stress modifies the content of bioactive compounds in tomato fruits and improves the antioxidant defense system, suggesting possible protection of the plant from the negative impacts of stress by salinity. However, analysis of the mechanism of action of CNMs through seed priming, in greater depth is suggested, perhaps with the use of omics sciences.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。