Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis

受贻贝启发的多功能水凝胶涂层可用于预防感染和增强成骨作用

阅读:6
作者:Hao Cheng, Kan Yue, Mehdi Kazemzadeh-Narbat, Yanhui Liu, Akbar Khalilpour, Bingyun Li, Yu Shrike Zhang, Nasim Annabi, Ali Khademhosseini

Abstract

Prevention of postsurgery infection and promotion of biointegration are the key factors to achieve long-term success in orthopedic implants. Localized delivery of antibiotics and bioactive molecules by the implant surface serves as a promising approach toward these goals. However, previously reported methods for surface functionalization of the titanium alloy implants to load bioactive ingredients suffer from time-consuming complex processes and lack of long-term stability. Here, we present the design and characterization of an adhesive, osteoconductive, and antimicrobial hydrogel coating for Ti implants. To form this multifunctional hydrogel, a photo-cross-linkable gelatin-based hydrogel was modified with catechol motifs to enhance adhesion to Ti surfaces and thus promote coating stability. To induce antimicrobial and osteoconductive properties, a short cationic antimicrobial peptide (AMP) and synthetic silicate nanoparticles (SNs) were introduced into the hydrogel formulation. The controlled release of AMP loaded in the hydrogel demonstrated excellent antimicrobial activity to prevent biofilm formation. Moreover, the addition of SNs to the hydrogel formulation enhanced osteogenesis when cultured with human mesenchymal stem cells, suggesting the potential to promote new bone formation in the surrounding tissues. Considering the unique features of our implant hydrogel coating, including high adhesion, antimicrobial capability, and the ability to induce osteogenesis, it is believed that our design provides a useful alternative method for bone implant surface modification and functionalization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。