Melatonin Ameliorates the Progression of Alzheimer's Disease by Inducing TFEB Nuclear Translocation, Promoting Mitophagy, and Regulating NLRP3 Inflammasome Activity

褪黑素通过诱导 TFEB 核转位、促进线粒体自噬和调节 NLRP3 炎症小体活性来改善阿尔茨海默病的进展

阅读:9
作者:Li Fan, Xie Zhaohong, Wang Xiangxue, Xu Yingying, Zhang Xiao, Zhou Xiaoyan, Yan Jieke, Lai Chao

Background

The NLRP3 inflammasome is overactivated in the brains of APP/PS1 transgenic mice and AD patients, and mitophagy has an obvious negative regulatory role on NLRP3 inflammasome activation. The protective effect of melatonin in AD may be related to the regulation of mitophagy and NLRP3 inflammasome activity. TFEB plays a critical role in maintaining autophagy/mitophagy. Studies have found that TFEB plays a protective role in AD.

Conclusions

Melatonin promotes mitophagy by inducing TFEB nuclear translocation, downregulates NLRP3 inflammasome activation, and exerts protective effects in SH-SY5Y cells and APP/PS1 transgenic mice.

Methods

APP/PS1 transgenic mice were given melatonin in their drinking water for 3 months. Compared with mice without melatonin treatment, the mice given melatonin showed changes in the following features: (1) cognitive function, (2) mitophagy-related proteins in the brain, (3) ROS, (4) NLRP3 inflammasome and related proteins and the concentrations of inflammatory cytokines, and (5) Aβ deposition. In in vitro experiments, effects of melatonin on mitophagy, NLRP3 inflammasome activity, and TFEB in SH-SY5Y cells with Aβ 25-35 were observed. TFEB knockdown was implemented in combination with Aβ 25-35 and melatonin treatment, and the expressions of TFEB, Parkin, p62, IL-1β, caspase-1, ROS, and IL-18 were explored.

Results

Melatonin improved cognitive function in APP/PS1 transgenic mice and decreased ROS and senile plaques. Melatonin promoted mitophagy in SH-SY5Y cells with Aβ 25-35 and APP/PS1 transgenic mice. NLRP3 inflammasome activity was inhibited, and the concentrations of IL-18 and IL-1βwere clearly reduced. Compared with C57/BL6J mice, the amount of TFEB in the brain nucleus of APP/PS1 transgenic mice was decreased. Melatonin treatment increased the nuclear translocation of TFEB in SH-SY5Y cells. TFEB knockout was implemented in combination with Aβ 25-35 and MT treatment; the expressions of Parkin, p62, caspase-1, IL-1β, IL-18, and ROS were accelerated. Conclusions: Melatonin promotes mitophagy by inducing TFEB nuclear translocation, downregulates NLRP3 inflammasome activation, and exerts protective effects in SH-SY5Y cells and APP/PS1 transgenic mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。