In Situ Oriented Mn Deficient ZnMn2O4@C Nanoarchitecture for Durable Rechargeable Aqueous Zinc-Ion Batteries

原位定向 Mn 缺乏的 ZnMn2O4@C 纳米结构用于耐用可充电水性锌离子电池

阅读:5
作者:Saiful Islam, Muhammad Hilmy Alfaruqi, Dimas Yunianto Putro, Sohyun Park, Seokhun Kim, Seulgi Lee, Mohammad Shamsuddin Ahmed, Vinod Mathew, Yang-Kook Sun, Jang-Yeon Hwang, Jaekook Kim

Abstract

Manganese (Mn)-based cathode materials have garnered huge research interest for rechargeable aqueous zinc-ion batteries (AZIBs) due to the abundance and low cost of manganese and the plentiful advantages of manganese oxides including their different structures, wide range of phases, and various stoichiometries. A novel in situ generated Mn-deficient ZnMn2O4@C (Mn-d-ZMO@C) nanoarchitecture cathode material from self-assembly of ZnO-MnO@C for rechargeable AZIBs is reported. Analytical techniques confirm the porous and crystalline structure of ZnO-MnO@C and the in situ growth of Mn deficient ZnMn2O4@C. The Zn/Mn-d-ZMO@C cell displays a promising capacity of 194 mAh g-1 at a current density of 100 mA g-1 with 84% of capacity retained after 2000 cycles (at 3000 mA g-1 rate). The improved performance of this cathode originates from in situ orientation, porosity, and carbon coating. Additionally, first-principles calculations confirm the high electronic conductivity of Mn-d-ZMO@C cathode. Importantly, a good capacity retention (86%) is obtained with a year-old cell (after 150 cycles) at 100 mA g-1 current density. This study, therefore, indicates that the in situ grown Mn-d-ZMO@C nanoarchitecture cathode is a promising material to prepare a durable AZIB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。