Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea

从阿拉伯海季节性氧气最低区分离的土曲霉进行异化硝酸盐还原

阅读:5
作者:Peter Stief, Silvia Fuchs-Ocklenburg, Anja Kamp, Cathrine-Sumathi Manohar, Jos Houbraken, Teun Boekhout, Dirk de Beer, Thorsten Stoeck

Background

A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission.

Conclusions

Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide.

Results

Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A ¹&sup5;N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol ¹&sup5;NH&sub4;⁺ g⁻¹ protein h⁻¹. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6-8 μmol NO&sub3;⁻ g⁻¹ protein) for dissimilatory nitrate reduction. Conclusions: Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。