Reprogramming efficiency and pluripotency of mule iPSCs over its parents†

骡子 iPSC 相对于其亲本的重编程效率和多能性†

阅读:7
作者:Jia Zhang, Lixia Zhao, Yuting Fu, Fangyuan Liu, Zixin Wang, Yunxia Li, Gaoping Zhao, Wei Sun, Baojiang Wu, Yongli Song, Shaohua Li, Chunxia Hao, Bilige Wuyun, Rihan Wu, Moning Liu, Guifang Cao, Buhe Nashun, M Azim Surani, Qingyuan Sun, Siqin Bao, Pentao Liu, Xihe Li

Abstract

The mule is the interspecific hybrid of horse and donkey and has hybrid vigor in muscular endurance, disease resistance, and longevity over its parents. Here, we examined adult fibroblasts of mule (MAFs) compared with the cells from their parents (donkey adult fibroblasts and horse adult fibroblasts) (each species has repeated three independent individuals) in proliferation, apoptosis, and glycolysis and found significant differences. We subsequently derived mule, donkey, and horse doxycycline (Dox)-independent induced pluripotent stem cells (miPSCs, diPSCs, and hiPSCs) from three independent individuals of each species and found that the reprogramming efficiency of MAFs was significantly higher than that of cells of donkey and horse. miPSCs, diPSCs, and hiPSCs all expressed the high levels of crucial endogenous pluripotency genes such as POU class 5 homeobox 1 (POU5F1, OCT4), SRY-box 2 (SOX2), and Nanog homeobox (NANOG) and propagated robustly in single-cell passaging. miPSCs exhibited faster proliferation and higher pluripotency and differentiation than diPSCs and hiPSCs, which were reflected in co-cultures and separate-cultures, teratoma formation, and chimera contribution. The establishment of miPSCs provides a unique research material for the investigation of "heterosis" and perhaps is more significant to study hybrid gamete formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。