Targeting tyrosine-kinases and estrogen receptor abrogates resistance to endocrine therapy in breast cancer

靶向酪氨酸激酶和雌激素受体可消除乳腺癌对内分泌治疗的耐药性

阅读:5
作者:Shuying Liu, Xiaolong Meng, Huiqin Chen, Wenbin Liu, Todd Miller, Mandi Murph, Yiling Lu, Fan Zhang, Mihai Gagea, Carlos L Arteaga, Gordon B Mills, Funda Meric-Bernstam, Ana M González-Angulo

Abstract

Despite numerous therapies that effectively inhibit estrogen signaling in breast cancer, a significant proportion of patients with estrogen receptor (ER)-positive malignancy will succumb to their disease. Herein we demonstrate that long-term estrogen deprivation (LTED) therapy among ER-positive breast cancer cells results in the adaptive increase in ER expression and subsequent activation of multiple tyrosine kinases. Combination therapy with the ER down-regulator fulvestrant and dasatinib, a broad kinase inhibitor, exhibits synergistic activity against LTED cells, by reduction of cell proliferation, cell survival, cell invasion and mammary acinar formation. Screening kinase phosphorylation using protein arrays and functional proteomic analysis demonstrates that the combination of fulvestrant and dasatinib inhibits multiple tyrosine kinases and cancer-related pathways that are constitutively activated in LTED cells. Because LTED cells display increased insulin receptor (InsR)/insulin-like growth factor 1 receptor (IGF-1R) signaling, we added an ant-IGF-1 antibody to the combination with fulvestrant and dasatinib in an effort to further increase the inhibition. However, adding MK0646 only modestly increased the inhibition of cell growth in monolayer culture, but neither suppressed acinar formation nor inhibited cell migration in vitro and invasion in vivo. Therefore, combinations of fulvestrant and dasatinib, but not MK0646, may benefit patients with tyrosine-kinase-activated, endocrine therapy-resistant breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。