Peptide Triazole Thiol Irreversibly Inactivates Metastable HIV-1 Env by Accessing Conformational Triggers Intrinsic to Virus-Cell Entry

肽三唑硫醇通过进入病毒细胞固有的构象触发因素不可逆地灭活亚稳态 HIV-1 Env

阅读:6
作者:Charles Gotuaco Ang, Erik Carter, Ann Haftl, Shiyu Zhang, Adel A Rashad, Michele Kutzler, Cameron F Abrams, Irwin M Chaiken

Abstract

KR13, a peptide triazole thiol previously established to inhibit HIV-1 infection and cause virus lysis, was evaluated by flow cytometry against JRFL Env-presenting cells to characterize induced Env and membrane transformations leading to irreversible inactivation. Transiently transfected HEK293T cells were preloaded with calcein dye, treated with KR13 or its thiol-blocked analogue KR13b, fixed, and stained for gp120 (35O22), MPER (10E8), 6-helix-bundle (NC-1), immunodominant loop (50-69), and fusion peptide (VRC34.01). KR13 induced dose-dependent transformations of Env and membrane characterized by transient poration, MPER exposure, and 6-helix-bundle formation (analogous to native fusion events), but also reduced immunodominant loop and fusion peptide exposure. Using a fusion peptide mutant (V504E), we found that KR13 transformation does not require functional fusion peptide for poration. In contrast, simultaneous treatment with fusion inhibitor T20 alongside KR13 prevented membrane poration and MPER exposure, showing that these events require 6-helix-bundle formation. Based on these results, we formulated a model for PTT-induced Env transformation portraying how, in the absence of CD4/co-receptor signaling, PTT may provide alternate means of perturbing the metastable Env-membrane complex, and inducing fusion-like transformation. In turn, the results show that such transformations are intrinsic to Env and can be diverted for irreversible inactivation of the protein complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。