ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis

巨噬细胞中 ATF4 敲低会损害糖酵解并通过靶向脓毒症中的 HK2 和 HIF-1α 泛素化介导免疫耐受

阅读:7
作者:Tiantian Liu, Zhenliang Wen, Lujing Shao, Yun Cui, Xiaomeng Tang, Huijie Miao, Jingyi Shi, Linlin Jiang, Shuyun Feng, Yilin Zhao, Hong Zhang, Qiming Liang, Dechang Chen, Yucai Zhang, Chunxia Wang

Abstract

Strengthened glycolysis is crucial for the macrophage pro-inflammatory response during sepsis. Activating transcription factor 4 (ATF4) plays an important role in regulating glucose and lipid metabolic homeostasis in hepatocytes and adipocytes. However, its immunometabolic role in macrophage during sepsis remains largely unknown. In the present study, we found that the expression of ATF4 in peripheral blood mononuclear cells (PBMCs) was increased and associated with glucose metabolism in septic patients. Atf4 knockdown specifically decreased LPS-induced spleen macrophages and serum pro-inflammatory cytokines levels in mice. Moreover, Atf4 knockdown partially blocked LPS-induced pro-inflammatory cytokines, lactate accumulation and glycolytic capacity in RAW264.7. Mechanically, ATF4 binds to the promoter region of hexokinase II (HK2), and interacts with hypoxia inducible factor-1α (HIF-1α) and stabilizes HIF-1α through ubiquitination modification in response to LPS. Furthermore, ATF4-HIF-1α-HK2-glycolysis axis launches pro-inflammatory response in macrophage depending on the activation of mammalian target of rapamycin (mTOR). Importantly, Atf4 overexpression improves the decreased level of pro-inflammatory cytokines and lactate secretion and HK2 expression in LPS-induced tolerant macrophages. In conclusion, we propose a novel function of ATF4 as a crucial glycolytic activator contributing to pro-inflammatory response and improving immune tolerant in macrophage involved in sepsis. So, ATF4 could be a potential new target for immunotherapy of sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。