Redox proteomics changes in the fungal pathogen Trichosporon asahii on arsenic exposure: identification of protein responses to metal-induced oxidative stress in an environmentally-sampled isolate

真菌病原菌阿萨希毛孢子菌在砷暴露下的氧化还原蛋白质组学变化:鉴定环境采样分离物中对金属诱导的氧化应激的蛋白质反应

阅读:4
作者:Sidra Ilyas, Abdul Rehman, Ana Coelho Varela, David Sheehan

Abstract

Trichosporon asahii is a yeast pathogen implicated in opportunistic infections. Cultures of an isolate collected from industrial wastewater were exposed for 2 days to 100 mg/L sodium arsenite (NaAsO2) and cadmium (CdCl2). Both metals reduced glutathione transferase (GST) activity but had no effect on superoxide dismutase or catalase. NaAsO2 exposure increased glutathione reductase activity while CdCl2 had no effect. Protein thiols were labeled with 5-iodoacetamido fluorescein followed by one dimensional electrophoresis which revealed extensive protein thiol oxidation in response to CdCl2 treatment but thiol reduction in response to NaAsO2. Two dimensional electrophoresis analyses showed that the intensity of some protein spots was enhanced on treatment as judged by SameSpots image analysis software. In addition, some spots showed decreased IAF fluorescence suggesting thiol oxidation. Selected spots were excised and tryptic digested for identification by MALDI-TOF/TOF MS. Twenty unique T. asahii proteins were identified of which the following proteins were up-regulated in response to NaAsO2: 3-isopropylmalate dehydrogenase, phospholipase B, alanine-glyoxylate aminotransferase, ATP synthase alpha chain, 20S proteasome beta-type subunit Pre3p and the hypothetical proteins A1Q1_08001, A1Q2_03020, A1Q1_06950, A1Q1_06913. In addition, the following showed decreased thiol-associated fluorescence consistent with thiol oxidation; aconitase; aldehyde reductase I; phosphoglycerate kinase; translation elongation factor 2; heat shock protein 70 and hypothetical protein A1Q2_04745. Some proteins showed both increase in abundance coupled with decrease in IAF fluorescence; 3-hydroxyisobutyryl-CoA hydrolase; homoserine dehydrogenase Hom6 and hypothetical proteins A1Q2_03020 and A1Q1_00754. Targets implicated in redox response included 10 unique metabolic enzymes, heat shock proteins, a component of the 20S proteasome and translation elongation factor 2. These data suggest extensive proteomic alterations in response to metal-induced oxidative stress in T. asahii. Amino acid metabolism, protein folding and degradation are principally affected.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。