Monomethyl branched-chain fatty acids are critical for Caenorhabitis elegans survival in elevated glucose conditions

单甲基支链脂肪酸对于秀丽隐杆线虫在高葡萄糖条件下的生存至关重要

阅读:6
作者:Andre F C Vieira, Mark A Xatse, Hamide Tifeki, Cédric Diot, Albertha J M Walhout, Carissa Perez Olsen

Abstract

The maintenance of optimal membrane composition under basal and stress conditions is critical for the survival of an organism. High-glucose stress has been shown to perturb membrane properties by decreasing membrane fluidity, and the membrane sensor PAQR-2 is required to restore membrane integrity. However, the mechanisms required to respond to elevated dietary glucose are not fully established. In this study, we used a 13C stable isotope-enriched diet and mass spectrometry to better understand the impact of glucose on fatty acid dynamics in the membrane of Caenorhabditis elegans. We found a novel role for monomethyl branched-chain fatty acids (mmBCFAs) in mediating the ability of the nematodes to survive conditions of elevated dietary glucose. This requirement of mmBCFAs is unique to glucose stress and was not observed when the nematode was fed elevated dietary saturated fatty acid. In addition, when worms deficient in elo-5, the major biosynthesis enzyme of mmBCFAs, were fed Bacillus subtilis (a bacteria strain rich in mmBCFAs) in combination with high glucose, their survival rates were rescued to wild-type levels. Finally, the results suggest that mmBCFAs are part of the PAQR-2 signaling response during glucose stress. Taken together, we have identified a novel role for mmBCFAs in stress response in nematodes and have established these fatty acids as critical for adapting to elevated glucose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。