Epstein-Barr virus-specific methylation of human genes in gastric cancer cells

胃癌细胞中 Epstein-Barr 病毒特异性甲基化

阅读:9
作者:Julie L Ryan, Richard J Jones, Shannon C Kenney, Ashley G Rivenbark, Weihua Tang, Elizabeth Rw Knight, William B Coleman, Margaret L Gulley

Background

Epstein-Barr Virus (EBV) is found in 10% of all gastric adenocarcinomas but its role in tumor development and maintenance remains unclear. The

Conclusions

EBV alters human gene expression in ways that could contribute to the unique pathobiology of virus-associated cancer. Furthermore, the frequency and reversability of methylation-related transcriptional alterations suggest that demethylating agents have therapeutic potential for managing EBV-related carcinoma.

Methods

Gene expression patterns were examined in EBV-negative and EBV-positive AGS gastric epithelial cells using a low density microarray, reverse transcription PCR, histochemical stains, and methylation-specific DNA sequencing. Expression of PTGS2 (COX2) was measured in AGS cells and in primary gastric adenocarcinoma tissues.

Results

In array studies, nearly half of the 96 human genes tested, representing 15 different cancer-related signal transduction pathways, were dysregulated after EBV infection. Reverse transcription PCR confirmed significant impact on factors having diverse functions such as cell cycle regulation (IGFBP3, CDKN2A, CCND1, HSP70, ID2, ID4), DNA repair (BRCA1, TFF1), cell adhesion (ICAM1), inflammation (COX2), and angiogenesis (HIF1A). Demethylation using 5-aza-2'-deoxycytidine reversed the EBV-mediated dysregulation for all 11 genes listed here. For some promoter sequences, CpG island methylation and demethylation occurred in an EBV-specific pattern as shown by bisulfite DNA sequencing. Immunohistochemistry was less sensitive than was western blot for detecting downregulation of COX2 upon EBV infection. Virus-related dysregulation of COX2 levels in vitro was not recapitulated in vivo among naturally infected gastric cancer tissues. Conclusions: EBV alters human gene expression in ways that could contribute to the unique pathobiology of virus-associated cancer. Furthermore, the frequency and reversability of methylation-related transcriptional alterations suggest that demethylating agents have therapeutic potential for managing EBV-related carcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。