MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants

MLb-LDLr:用于预测 LDLr 错义变异致病性的机器学习模型

阅读:6
作者:Asier Larrea-Sebal, Asier Benito-Vicente, José A Fernandez-Higuero, Shifa Jebari-Benslaiman, Unai Galicia-Garcia, Kepa B Uribe, Ana Cenarro, Helena Ostolaza, Fernando Civeira, Sonia Arrasate, Humberto González-Díaz, César Martín

Abstract

Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high number of mutations already described in the LDLr makes necessary cascade screening or in vitro functional characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software constitutes a valuable approach for assessing pathogenicity of LDLr variants to help in the early diagnosis and management of FH disease. This work provides a reliable machine learning model to accurately predict the pathogenicity of LDLr missense variants with specificity of 92.5% and sensitivity of 91.6%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。