Vitamin D receptor cross-talk with p63 signaling promotes epidermal cell fate

维生素 D 受体与 p63 信号相互作用促进表皮细胞命运

阅读:16
作者:Yuko Oda, Christian T Wong, Dennis H Oh, Mark B Meyer, J Wesley Pike, Daniel D Bikle

Abstract

The vitamin D receptor with its ligand 1,25 dihydroxy vitamin D3 (1,25D3) regulates epidermal stem cell fate, such that VDR removal from Krt14 expressing keratinocytes delays re-epithelialization of epidermis after wound injury in mice. In this study we deleted Vdr from Lrig1 expressing stem cells in the isthmus of the hair follicle then used lineage tracing to evaluate the impact on re-epithelialization following injury. We showed that Vdr deletion from these cells prevents their migration to and regeneration of the interfollicular epidermis without impairing their ability to repopulate the sebaceous gland. To pursue the molecular basis for these effects of VDR, we performed genome wide transcriptional analysis of keratinocytes from Vdr cKO and control littermate mice. Ingenuity Pathway analysis (IPA) pointed us to the TP53 family including p63 as a partner with VDR, a transcriptional factor that is essential for proliferation and differentiation of epidermal keratinocytes. Epigenetic studies on epidermal keratinocytes derived from interfollicular epidermis showed that VDR is colocalized with p63 within the specific regulatory region of MED1 containing super-enhancers of epidermal fate driven transcription factor genes such as Fos and Jun. Gene ontology analysis further implicated that Vdr and p63 associated genomic regions regulate genes involving stem cell fate and epidermal differentiation. To demonstrate the functional interaction between VDR and p63, we evaluated the response to 1,25(OH)2D3 of keratinocytes lacking p63 and noted a reduction in epidermal cell fate determining transcription factors such as Fos, Jun. We conclude that VDR is required for the epidermal stem cell fate orientation towards interfollicular epidermis. We propose that this role of VDR involves cross-talk with the epidermal master regulator p63 through super-enhancer mediated epigenetic dynamics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。