Pivotal role of epithelial cell adhesion molecule in the survival of lung cancer cells

上皮细胞粘附分子在肺癌细胞存活中的关键作用

阅读:8
作者:Tetsunari Hase, Mitsuo Sato, Kenya Yoshida, Luc Girard, Yoshihiro Takeyama, Mihoko Horio, Momen Elshazley, Tomoyo Oguri, Yoshitaka Sekido, David S Shames, Adi F Gazdar, John D Minna, Masashi Kondo, Yoshinori Hasegawa

Abstract

Epithelial cell adhesion molecule (EpCAM) is overexpressed in a wide variety of human cancers including lung cancer, and its contribution to increased proliferation through upregulation of cell cycle accelerators such as cyclins A and E has been well established in breast and gastric cancers. Nevertheless, very little is known about its role in supporting the survival of cancer cells. In addition, the functional role of EpCAM in the pathogenesis of lung cancer remains to be explored. In this study, we show that RNAi-mediated knockdown of EpCAM suppresses proliferation and clonogenic growth of three EpCAM-expressing lung cancer cell lines (H3255, H358, and HCC827), but does not induce cell cycle arrest in any of these. In addition, EpCAM knockdown inhibits invasion in the highly invasive H358 but not in less invasive H3255 cells in a Transwell assay. Of note, the EpCAM knockdown induces massive apoptosis in the three cell lines as well as in another EpCAM-expressing lung cancer cell line, HCC2279, but to a much lesser extent in a cdk4/hTERT immortalized normal human bronchial epithelial cell line, HBEC4, suggesting that EpCAM could be a therapeutic target for lung cancer. Finally, EpCAM knockdown partially restores contact inhibition in HCC827, in association with p27(Kip1) upregulation. These results indicate that EpCAM could contribute substantially to the pathogenesis of lung cancer, especially cancer cell survival, and suggest that EpCAM targeted therapy for lung cancer may have potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。