Progesterone withdrawal promotes remodeling processes in the nonpregnant mouse cervix

孕酮戒断促进非妊娠小鼠宫颈的重塑过程

阅读:5
作者:Steven M Yellon, Alexandra E Burns, Jennifer L See, Thomas J Lechuga, Michael A Kirby

Abstract

Prepartum cervical ripening is associated with remodeling of collagen structure and with inflammation. Progesterone withdrawal is critical for parturition, but the effects of progesterone decline on cervical morphology are unknown. The present study tested the hypothesis that progesterone withdrawal promotes processes associated with remodeling of the cervix. Adult, virgin, female C57BL/6 mice received silastic capsules with oil vehicle or estradiol plus progesterone to parallel concentrations in circulation during pregnancy. After 17 days of estradiol and progesterone treatment, the progesterone implant was removed from one group. Mice in each group were killed 15, 18, or 19 days after placement of capsules. Sections of cervix were stained for collagen, and the densities of macrophages, neutrophils, and area with nerve fibers were assessed. Treatment with gonadal steroids promoted hypertrophy of the cervix, as well as reduced collagen and increased area with nerve fibers compared with vehicle-treated controls. Removal of the progesterone capsule did not affect hypertrophy or innervation, but it did reduce collagen. By contrast, significantly more macrophages and neutrophils were present in the cervix on Days 18 and 19 (i.e., by 24 and 48 h after withdrawal of the progesterone capsule); the immune cell census was equivalent to that in vehicle controls. Findings indicate that gonadal steroids, comparable to those during pregnancy, promote hypertrophy and suppress immigration of immune cells in the cervix. Therefore, in a nonpregnant murine model for parturition, progesterone withdrawal is suggested to recruit immune cells and processes that remodel the cervix.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。