Kallikrein-related peptidase (KLK10) cessation blunts colorectal cancer cell growth and glucose metabolism by regulating the PI3K/Akt/mTOR pathway

激肽释放酶相关肽酶 (KLK10) 停止通过调节 PI3K/Akt/mTOR 通路抑制结直肠癌细胞生长和葡萄糖代谢

阅读:7
作者:H Wei, C Dong, Z Shen

Abstract

Colorectal cancer (CRC) is a common aggressive carcinoma with a proverbial feature of metabolic reprogramming that is essential for cancer cell growth. Recent research corroborates the controversial function of kallikrein-related peptidase 10 (KLK10) in cancer. However, its role and underlying mechanism in CRC remains elusive. In the present study, high expression of KLK10 was detected in CRC cell lines. Knockdown of KLK10 expression by a specific siRNA inhibited cell proliferation, evoked cell apoptosis, and increased caspase-3 activity in HT29 CRC cells. Furthermore, KLK10 suppression also afforded the suppressive effects on glycolysis in CRC cells as the data showed that targeting KLK10 restrained glucose uptake, lactate production, and glycolysis-related glucose transporter 1 (Glut1) expression. Mechanism analysis corroborated that cessation of KLK10 muted the PI3K/AKT-mTOR signaling. Intriguingly, reactivating the PI3K/AKT-mTOR pathway by its agonist IGF-1 notably reversed the inhibitory effects of KLK10 cessation on CRC cell growth and glucose metabolism. More important, preconditioning with PI3K/AKT inhibitor LY294002 or mTOR inhibitor rapamycin both aggravated KLK10 knockdown-suppressed cancer cell growth and glucose metabolism. These findings suggest that KLK10 silencing may attenuate the progression of CRC by inhibiting cell growth and glycolysis via the PI3K/AKT/mTOR signaling, supporting a potential and promising target for CRC therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。