State-Dependent Modification of Sensory Sensitivity via Modulation of Backpropagating Action Potentials

通过调节反向传播动作电位实现感觉敏感性的状态依赖性修改

阅读:5
作者:Carola Städele, Margaret L DeMaegd, Wolfgang Stein

Abstract

Neuromodulators play a critical role in sensorimotor processing via various actions, including pre- and postsynaptic signal modulation and direct modulation of signal encoding in peripheral dendrites. Here, we present a new mechanism that allows state-dependent modulation of signal encoding in sensory dendrites by neuromodulatory projection neurons. We studied the impact of antidromic action potentials (APs) on stimulus encoding using the anterior gastric receptor (AGR) neuron in the heavily modulated crustacean stomatogastric ganglion (STG). We found that ectopic AP initiation in AGR's axon trunk is under direct neuromodulatory control by the inferior ventricular (IV) neurons, a pair of descending projection neurons. IV neuron activation elicited a long-lasting decrease in AGR ectopic activity. This modulation was specific to the site of AP initiation and could be mimicked by focal application of the IV neuron co-transmitter histamine. IV neuron actions were diminished after blocking H2 receptors in AGR's axon trunk, suggesting a direct axonal modulation. This local modulation did not affect the propagation dynamics of en passant APs. However, decreases in ectopic AP frequency prolonged sensory bursts elicited distantly near AGR's dendrites. This frequency-dependent effect was mediated via the reduction of antidromic APs, and the diminishment of backpropagation into the sensory dendrites. Computational models suggest that invading antidromic APs interact with local ionic conductances, the rate constants of which determine the sign and strength of the frequency-dependent change in sensory sensitivity. Antidromic APs therefore provide descending projection neurons with a means to influence sensory encoding without affecting AP propagation or stimulus transduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。