Activin A-derived human embryonic stem cells show increased competence to differentiate into primordial germ cell-like cells

激活素 A 衍生的人类胚胎干细胞表现出增强的分化为原始生殖细胞样细胞的能力

阅读:4
作者:Swati Mishra, Jasin Taelman, Mina Popovic, Laurentijn Tilleman, Evi Duthoo, Margot van der Jeught, Dieter Deforce, Filip van Nieuwerburgh, Björn Menten, Petra de Sutter, Annekatrien Boel, Susana M Chuva De Sousa Lopes, Björn Heindryckx

Abstract

Protocols for specifying human primordial germ cell-like cells (hPGCLCs) from human embryonic stem cells (hESCs) remain hindered by differences between hESC lines, their derivation methods, and maintenance culture conditions. This poses significant challenges for establishing reproducible in vitro models of human gametogenesis. Here, we investigated the influence of activin A (ActA) during derivation and maintenance on the propensity of hESCs to differentiate into PGCLCs. We show that continuous ActA supplementation during hESC derivation (from blastocyst until the formation of the post-inner cell mass intermediate [PICMI]) and supplementation (from the first passage of the PICMI onwards) is beneficial to differentiate hESCs to PGCLCs subsequently. Moreover, comparing isogenic primed and naïve states prior to differentiation, we showed that conversion of hESCs to the 4i-state improves differentiation to (TNAP [tissue nonspecific alkaline phosphatase]+/PDPN [podoplanin]+) PGCLCs. Those PGCLCs expressed several germ cell markers, including TFAP2C (transcription factor AP-2 gamma), SOX17 (SRY-box transcription factor 17), and NANOS3 (nanos C2HC-type zinc finger 3), and markers associated with germ cell migration, CXCR4 (C-X-C motif chemokine receptor 4), LAMA4 (laminin subunit alpha 4), ITGA6 (integrin subunit alpha 6), and CDH4 (cadherin 4), suggesting that the large numbers of PGCLCs obtained may be suitable to differentiate further into more mature germ cells. Finally, hESCs derived in the presence of ActA showed higher competence to differentiate to hPGCLC, in particular if transiently converted to the 4i-state. Our work provides insights into the differences in differentiation propensity of hESCs and delivers an optimized protocol to support efficient human germ cell derivation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。