Elevated parkinsonism pathological markers in dopaminergic neurons with developmental exposure to atrazine

发育过程中接触阿特拉津导致多巴胺能神经元的帕金森病病理标志物升高

阅读:11
作者:Han Zhao, Junkai Xie, Shichen Wu, Xihui Zhao, Oscar F Sánchez, Sehong Min, Jean-Christophe Rochet, Jennifer L Freeman, Chongli Yuan

Abstract

Atrazine (ATZ) is one of the most used herbicides in the US and a known endocrine disruptor. ATZ is frequently detected in drinking water, especially in Midwestern regions of the United States, exceeding the EPA regulation of maximum contamination level (MCL) of 3 ppb. Epidemiology studies have suggested an association between ATZ exposure and neurodegeneration. Less, however, is known about the neurotoxic mechanism of ATZ, particularly for exposures at a developmental stage. Here, we exposed floor plate progenitors (FPPs) derived from human induced pluripotent stem cells (hiPSCs) to low concentrations of ATZ at 0.3 and 3 ppb for two days followed by differentiation into dopaminergic (DA) neurons in ATZ-free medium. We then examined the morphology, activity, pathological protein aggregation, and transcriptomic changes of differentiated DA neurons. We observed significant decrease in the complexity of neurite network, increase of neuronal activity, and elevated tau- and α-synuclein (aSyn) pathologies after ATZ exposure. The ATZ-induced neuronal changes observed here align with pathological characteristics in Parkinson's disease (PD). Transcriptomic analysis further corroborates our findings; and collectively provides a strong evidence base that low-concentration ATZ exposure during development can elicit increased risk of neurodegeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。