Machine Learning for Discovery of GSK3β Inhibitors

机器学习用于发现 GSK3β 抑制剂

阅读:6
作者:Patricia A Vignaux, Eni Minerali, Daniel H Foil, Ana C Puhl, Sean Ekins

Abstract

Alzheimer's disease (AD) is the most common cause of dementia, affecting approximately 35 million people worldwide. The current treatment options for people with AD consist of drugs designed to slow the rate of decline in memory and cognition, but these treatments are not curative, and patients eventually suffer complete cognitive injury. With the substantial amounts of published data on targets for this disease, we proposed that machine learning software could be used to find novel small-molecule treatments that can supplement the AD drugs currently on the market. In order to do this, we used publicly available data in ChEMBL to build and validate Bayesian machine learning models for AD target proteins. The first AD target that we have addressed with this method is the serine-threonine kinase glycogen synthase kinase 3 beta (GSK3β), which is a proline-directed serine-threonine kinase that phosphorylates the microtubule-stabilizing protein tau. This phosphorylation prompts tau to dissociate from the microtubule and form insoluble oligomers called paired helical filaments, which are one of the components of the neurofibrillary tangles found in AD brains. Using our Bayesian machine learning model for GSK3β consisting of 2368 molecules, this model produced a five-fold cross validation ROC of 0.905. This model was also used for virtual screening of large libraries of FDA-approved drugs and clinical candidates. Subsequent testing of selected compounds revealed a selective small-molecule inhibitor, ruboxistaurin, with activity against GSK3β (avg IC50 = 97.3 nM) and GSK3α (IC50 = 695.9 nM). Several other structurally diverse inhibitors were also identified. We are now applying this machine learning approach to additional AD targets to identify approved drugs or clinical trial candidates that can be repurposed as AD therapeutics. This represents a viable approach to accelerate drug discovery and do so at a fraction of the cost of traditional high throughput screening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。