Hormonal coordination of natriuretic peptide type C and natriuretic peptide receptor 3 expression in mouse granulosa cells

小鼠颗粒细胞中 C 型利钠肽和 3 型利钠肽受体表达的激素协调

阅读:3
作者:Kyung-Bon Lee, Meijia Zhang, Koji Sugiura, Karen Wigglesworth, Tracy Uliasz, Laurinda A Jaffe, John J Eppig

Abstract

Natriuretic peptide type C (NPPC) and its receptor natriuretic peptide receptor 2 (NPR2) regulate cGMP in ovarian follicles and participate in maintaining oocyte meiotic arrest. We investigated the regulation of Nppc expression in mouse granulosa cells in vivo and in vitro. In mural granulosa cells (MGCs) in vivo, eCG caused an increase in Nppc mRNA, and subsequent human chorionic gonadotropin (hCG) treatment caused a decrease. A culture system was established for MGCs isolated from follicles not stimulated with equine chorionic gonadotropin to further define the mechanisms controlling Nppc expression. In this system, expression of Nppc mRNA was increased by estradiol (E2), with augmentation by follicle-stimulating hormone (FSH), but FSH or luteinizing hormone (LH) alone had no effect. Thus, estrogens are important for regulating Nppc expression, probably by feedback mechanisms enhancing the action of gonadotropins. In MGCs treated with E2 plus FSH in vitro, subsequent treatment with EGF, but not LH, decreased Nppc mRNA. MGCs express higher levels of both Nppc and Lhcgr mRNAs than cumulus cells. Oocyte-derived paracrine factors suppressed cumulus cell Lhcgr but not Nppc expression. Thus, higher Nppc expression by MGCs is not the result of oocyte suppression of expression in cumulus cells. Another possible regulator of the LH-induced NPPC decrease is NPR3, an NPPC clearance receptor. Human chorionic gonadotropin increased Npr3 expression in vivo and LH increased Npr3 mRNA in cultured MGCs, independently of EGF receptor activation. Interestingly, despite the increase in Npr3 mRNA, the hCG-induced decrease in ovarian NPPC occurred normally in an Npr3 mutant (lgj), thus NPR3 probably does not participate in regulation of ovarian NPPC levels or oocyte development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。