Columnar Lesions in Barrel Cortex Persistently Degrade Object Location Discrimination Performance

桶状皮质中的柱状病变会持续降低物体位置辨别能力

阅读:6
作者:Lauren Ryan, Maya Laughton, Andrew Sun-Yan, Samantha Costello, Ravi Pancholi, Simon Peron

Abstract

Primary sensory cortices display functional topography, suggesting that even small cortical volumes may underpin perception of specific stimuli. Traditional loss-of-function approaches have a relatively large radius of effect (>1 mm), and few studies track recovery following loss-of-function perturbations. Consequently, the behavioral necessity of smaller cortical volumes remains unclear. In the mouse primary vibrissal somatosensory cortex (vS1), "barrels" with a radius of ∼150 μm receive input predominantly from a single whisker, partitioning vS1 into a topographic map of well defined columns. Here, we train animals implanted with a cranial window over vS1 to perform single-whisker perceptual tasks. We then use high-power laser exposure centered on the barrel representing the spared whisker to produce lesions with a typical volume of one to two barrels. These columnar-scale lesions impair performance in an object location discrimination task for multiple days without disrupting vibrissal kinematics. Animals with degraded location discrimination performance can immediately perform a whisker touch detection task with high accuracy. Animals trained de novo on both simple and complex whisker touch detection tasks showed no permanent behavioral deficits following columnar-scale lesions. Thus, columnar-scale lesions permanently degrade performance in object location discrimination tasks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。