Cyclic GMP signaling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes

环磷酸鸟苷信号参与小鼠卵母细胞促黄体生成素依赖性减数分裂成熟

阅读:6
作者:Sergio Vaccari, James L Weeks 2nd, Minnie Hsieh, Frank S Menniti, Marco Conti

Abstract

It is well established that cAMP signaling is an important regulator of the oocyte meiotic cell cycle. Conversely, the function of cGMP during oocyte maturation is less clear. Herein, we evaluated the expression of cGMP-hydrolyzing phosphodiesterases (PDEs) in the somatic and germ cell compartments of the mouse ovarian follicle and demonstrate that PDE5 is preferentially expressed in somatic cells. Cyclic GMP is a potent inhibitor of cAMP hydrolysis from oocyte extracts, with a 50% inhibitory concentration of 97 nM. Luteinizing hormone (LH) stimulation of cultured preovulatory follicles results in a marked decrease in cGMP content, and a nadir is reached in 1.5 h; similarly, oocyte cGMP levels decrease after gonadotropin stimulation in vivo. The LH-dependent decrease in cGMP requires activation of the epidermal growth factor network. Treatment of follicles with a PDE5 inhibitor increases cGMP in the follicle well above unstimulated levels. Although LH causes a decrease in cGMP in follicles preincubated with PDE5 inhibitors, the levels of this nucleotide remain above unstimulated levels. Under these conditions of elevated cGMP, LH stimulation does not cause oocyte maturation after 5 h of incubation. Microinjection of a cGMP-specific PDE into oocytes causes meiotic maturation of wild-type oocytes, suggesting that an intraoocyte pool of cGMP is involved in the maintenance of meiotic arrest. This effect is absent in PDE3A-deficient oocytes. Taken together, these findings provide evidence that cGMP and cAMP signaling cooperate in maintaining meiotic arrest via regulation of PDE3A and that a decrease in cGMP in the somatic compartment is one of the signals contributing to meiotic maturation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。