Lytic Cell Death in Specific Microglial Subsets Is Required for Preventing Atypical Behavior in Mice

特定小胶质细胞亚群的溶解性细胞死亡是预防小鼠异常行为的必要条件

阅读:6
作者:Hsiu-Chun Chuang, Eva K Nichols, Isabella Rauch, Wei-Cheng Chang, Patrick M Lin, Rhea Misra, Maiko Kitaoka, Russell E Vance, Kaoru Saijo

Abstract

Microglial cells are known to contribute to brain development and behaviors, but the mechanisms behind such functions are not fully understood. Here, we show that mice deficient in inflammasome regulators, including caspase-1 (Casp1), NLR family pyrin domain containing 3 (Nlrp3), IL-1 receptor (Il-1r), and gasdermin D (Gsdmd), exhibit behavior abnormalities characterized by hyperactivity and low anxiety levels. Furthermore, we found that expression of Casp1 in CX3CR1+ myeloid cells, which includes microglia, is required for preventing these abnormal behaviors. Through tissue clearing and 3D imaging, we discovered that small numbers of Cx3cr1-GFP+ fetal microglial cells formed clusters and underwent lytic cell death in the primitive thalamus and striatum between embryonic day (E)12.5 and E14.5. This lytic cell death was diminished in Casp1-deficient mice. Further analysis of the microglial clusters showed the presence of Pax6+ neural progenitor cells (NPCs); thus, we hypothesized that microglial lytic cell death is important for proper neuronal development. Indeed, increased numbers of neurons were observed in the thalamic subset in adult Casp1-/- brains. Finally, injection of drug inhibitors of NLRP3 and CASP1 into wild-type (WT) pregnant mice from E12.5 to E14.5, the period when lytic cell death was detected, was sufficient to induce atypical behaviors in offspring. Taken together, our data suggests that the inflammasome cascade in microglia is important for regulating neuronal development and normal behaviors, and that genetic or pharmacological inhibition of this pathway can induce atypical behaviors in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。