Dose-dependent functions of fibroblast growth factor 9 regulate the fate of murine XY primordial germ cells

成纤维细胞生长因子 9 的剂量依赖性功能调节小鼠 XY 原始生殖细胞的命运

阅读:7
作者:Ferhat Ulu, Sung-Min Kim, Toshifumi Yokoyama, Yukiko Yamazaki

Abstract

Male differentiation of primordial germ cells (PGCs) is initiated by the inhibition of entry into meiosis and exposure to male-inducing factor(s), which are regulated by somatic elements of the developing gonad. Fibroblast growth factor 9 (FGF9) produced by pre-Sertoli cells is essential for male gonadal differentiation and also contributes to survival and male differentiation of XY PGCs. However, it is not clear how FGF9 regulates PGC fate. Using a PGC culture system, we identified dose-dependent, fate-determining functions of FGF9 in XY PGCs. Treatment with low levels of FGF9 (0.2 ng/ml) increased expression of male-specific Dnmt3L and Nanos2 in XY PGCs. Conversely, treatment with high levels of FGF9 (25 ng/ml) suppressed male-specific gene expression and stimulated proliferation of XY PGCs. Western blotting showed that low FGF9 treatment enhanced p38 MAPK (mitogen-activated protein kinase) phosphorylation in the same cells. In contrast, high FGF9 treatment significantly stimulated the ERK (extracellular signal-regulated kinase)1/2 signaling pathway in XY PGCs. We investigated the relationship between the ERK1/2 signaling pathway stimulated by high FGF9 and regulation of PGC proliferation. An ERK1/2 inhibitor (U0126) suppressed the PGC proliferation that would otherwise be stimulated by high FGF9 treatment, and increased Nanos2 expression in XY PGCs. Conversely, a p38 MAPK inhibitor (SB202190) significantly suppressed Nanos2 expression that would otherwise be stimulated by low FGF9 in XY PGCs. Taken together, our results suggest that stage-specific expression of FGF9 in XY gonads regulates the balance between proliferation and differentiation of XY PGCs in a dose-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。