Magnetic hyperthermia of breast cancer cells and MRI relaxometry with dendrimer-coated iron-oxide nanoparticles

用树枝状聚合物包覆的氧化铁纳米粒子对乳腺癌细胞进行磁热疗和 MRI 弛豫测量

阅读:5
作者:Marzieh Salimi, Saeed Sarkar, Reza Saber, Hamid Delavari, Ali Mohammad Alizadeh, Hendrik Thijmen Mulder

Background

Recently, some studies have focused on dendrimer nanopolymers as a magnetic resonance imaging (MRI) contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron-oxide nanoparticles which are applied in magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the investigation of fourth-generation dendrimer-coated iron-oxide nanoparticles (G4@IONPs) in magnetic hyperthermia and MRI.

Conclusions

Our results encouraged the future application of G4@IONPs in magnetic hyperthermia and MR imaging.

Methods

IONPs were synthesized via co-precipitation and coated with the fourth generation (G4) of polyamidoamine dendrimer. The cytotoxicity of G4@IONPs with different concentrations was assessed in a human breast cancer cell line (MCF7) and human fibroblast cell line (HDF1). Hemolysis and stability of G4@IONPs were investigated, and in addition, the interaction of these particles with MCF7 cells was assessed by Prussian blue staining. Heat generation and specific absorption rate (SAR) were calculated from measurement and simulation

Results

The TEM results showed that G4@IONPs were 10 ± 4 nm. The in vitro toxicity assessments showed that synthesized nanoparticles had low toxicity. The viability of MCF7 cells incubated with G4@IONPs decreased significantly after magnetic hyperthermia. In addition, MR imaging revealed that G4@IONPs improved transverse relaxivity (r2) significantly. Conclusions: Our results encouraged the future application of G4@IONPs in magnetic hyperthermia and MR imaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。