Mapping Transcriptome-Wide and Genome-Wide RNA-DNA Contacts with Chromatin-Associated RNA Sequencing (ChAR-seq)

利用染色质相关 RNA 测序 (ChAR-seq) 绘制转录组范围和基因组范围的 RNA-DNA 接触图

阅读:7
作者:Charles Limouse, David Jukam, Owen K Smith, Kelsey A Fryer, Aaron F Straight

Abstract

RNAs play key roles in the cell as molecular intermediates for protein synthesis and as regulators of nuclear processes such as splicing, posttranscriptional regulation, or chromatin remodeling. Various classes of non-coding RNAs, including long non-coding RNAs (lncRNAs), can bind chromatin either directly or via interaction with chromatin binding proteins. It has been proposed that lncRNAs regulate cell-state-specific genes by coordinating the locus-dependent activity of chromatin-modifying complexes. Yet, the vast majority of lncRNAs have unknown functions, and we know little about the specific loci they regulate. A key step toward understanding chromatin regulation by RNAs is to map the genomic loci with which every nuclear RNA interacts and, reciprocally, to identify all RNAs that target a given locus. Our ability to generate such data has been limited, until recently, by the lack of methods to probe the genomic localization of more than a few RNAs at a time. Here, we describe a protocol for ChAR-seq, an RNA-DNA proximity ligation method that maps the binding loci for thousands of RNAs at once and without the need for specific RNA or DNA probe sequences. The ChAR-seq approach generates chimeric RNA-DNA molecules in situ and then converts those chimeras to DNA for next-generation sequencing. Using ChAR-seq we detect many types of chromatin-associated RNA, both coding and non-coding. Understanding the RNA-DNA interactome and its changes during differentiation or disease with ChAR-seq will likely provide key insights into chromatin and RNA biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。