Glial Sphingosine-Mediated Epigenetic Regulation Stabilizes Synaptic Function in Drosophila Models of Alzheimer's Disease

神经胶质鞘氨醇介导的表观遗传调控稳定阿尔茨海默病果蝇模型中的突触功能

阅读:3
作者:Pengqi Yin, Yimei Cai, Tao Cui, Andrew J Berg, Ting Wang, Danielle T Morency, Paxton M Paganelli, Chloe Lok, Yang Xue, Stefano Vicini, Tingting Wang

Abstract

Destabilization of neural activity caused by failures of homeostatic regulation has been hypothesized to drive the progression of Alzheimer's Disease (AD). However, the underpinning mechanisms that connect synaptic homeostasis and the disease etiology are yet to be fully understood. Here, we demonstrated that neuronal overexpression of amyloid β (Aβ) causes abnormal histone acetylation in peripheral glia and completely blocks presynaptic homeostatic potentiation (PHP) at the neuromuscular junction in Drosophila The synaptic deficits caused by Aβ overexpression in motoneurons are associated with motor function impairment at the adult stage. Moreover, we found that a sphingosine analog drug, Fingolimod, ameliorates synaptic homeostatic plasticity impairment, abnormal glial histone acetylation, and motor behavior defects in the Aβ models. We further demonstrated that perineurial glial sphingosine kinase 2 (Sk2) is not only required for PHP, but also plays a beneficial role in modulating PHP in the Aβ models. Glial overexpression of Sk2 rescues PHP, glial histone acetylation, and motor function deficits that are associated with Aβ in Drosophila Finally, we showed that glial overexpression of Sk2 restores PHP and glial histone acetylation in a genetic loss-of-function mutant of the Spt-Ada-Gcn5 Acetyltransferase complex, strongly suggesting that Sk2 modulates PHP through epigenetic regulation. Both male and female animals were used in the experiments and analyses in this study. Collectively, we provided genetic evidence demonstrating that abnormal glial epigenetic alterations in Aβ models in Drosophila are associated with the impairment of PHP and that the sphingosine signaling pathway displays protective activities in stabilizing synaptic physiology.SIGNIFICANCE STATEMENT Fingolimod, an oral drug to treat multiple sclerosis, is phosphorylated by sphingosine kinases to generate its active form. It is known that Fingolimod enhances the cognitive function in mouse models of Alzheimer's disease (AD), but the role of sphingosine kinases in AD is not clear. We bridge this knowledge gap by demonstrating the relationship between impaired homeostatic plasticity and AD. We show that sphingosine kinase 2 (Sk2) in glial cells is necessary for homeostatic plasticity and that glial Sk2-mediated epigenetic signaling has a protective role in synapse stabilization. Our findings demonstrate the potential of the glial sphingosine signaling as a key player in glia-neuron interactions during homeostatic plasticity, suggesting it could be a promising target for sustaining synaptic function in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。