Medial Ganglionic Eminence Progenitors Transplanted into Hippocampus Integrate in a Functional and Subtype-Appropriate Manner

移植到海马中的内侧神经节隆起祖细胞以功能性和亚型适当的方式整合

阅读:6
作者:Jui-Yi Hsieh, Scott C Baraban

Abstract

Medial ganglionic eminence (MGE) transplantation rescues disease phenotypes in various preclinical models with interneuron deficiency or dysfunction, including epilepsy. While underlying mechanism(s) remains unclear to date, a simple explanation is that appropriate synaptic integration of MGE-derived interneurons elevates GABA-mediated inhibition and modifies the firing activity of excitatory neurons in the host brain. However, given the complexity of interneurons and potential for transplant-derived interneurons to integrate or alter the host network in unexpected ways, it remains unexplored whether synaptic connections formed by transplant-derived interneurons safely mirror those associated with endogenous interneurons. Here, we combined optogenetics, interneuron-specific Cre driver mouse lines, and electrophysiology to study synaptic integration of MGE progenitors. We demonstrated that MGE-derived interneurons, when transplanted into the hippocampus of neonatal mice, migrate in the host brain, differentiate to mature inhibitory interneurons, and form appropriate synaptic connections with native pyramidal neurons. Endogenous and transplant-derived MGE progenitors preferentially formed inhibitory synaptic connections onto pyramidal neurons but not endogenous interneurons. These findings demonstrate that transplanted MGE progenitors functionally integrate into the postnatal hippocampal network.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。