Expression of integrin β-7 is epigenetically enhanced in multiple myeloma subgroups with high-risk cytogenetics

整合素 β-7 的表达在具有高风险细胞遗传学的多发性骨髓瘤亚组中表观遗传增强

阅读:5
作者:Samrat Roy Choudhury, Stephanie D Byrum, Duah Alkam, Cody Ashby, Fenghuang Zhan, Alan J Tackett, Frits Van Rhee

Background

Oncogenic overexpression of integrin-β7 (ITGB7) in cases of high-risk multiple myeloma (MM) was reported to promote enhanced interactions between neoplastic plasma-B cells and stromal cells to develop cell-adhesion mediated drug resistance.

Conclusions

Our findings suggest an epigenetic regulation of oncogenic overexpression of ITGB7 in MM cells, which could be critical in MM progression and an attractive therapeutic target.

Methods

Expression profiles of adhesion related genes were analyzed in a cohort of MM patients containing major IgH translocations or hyperdiploidies (HY), diagnosed at the premalignant monoclonal gammopathy of undetermined significance (MGUS; n = 103), smoldering multiple myeloma; (SMM; n = 190) or MM (MM; n = 53) stage. Differential expression was integrated with loci-specific alterations in DNA-methylation and chromatin marks in MM patients. A CRISPR-based targeted induction of DNA-methylation at the ITGB7 super-enhancer (SE) in MM.1S cells was employed to intersect the impact of cis-regulatory elements on ITGB7 expression.

Results

ITGB7 was significantly (p < 0.05) upregulated in patients with t(14;16) and t(14;20) subgroups in all MGUS, SMM and MM stages, but sporadically upregulated in t(4;14) subgroup at the MM stage. We demonstrate a predetermined enhancer state on ITGB7 in primary-B cells that is maintained under bivalent chromatin, which undergoes a process of chromatin-state alterations and develops into an active enhancer in cases of the t(4;14) subgroup or SE in cases of the t(14;16) subgroup. We also demonstrate that while targeted induction of DNA-methylation at the ITGB7-SE further upregulated the gene, inhibition of ITGB7-SE-associated transcription factor bromodomain-4 downregulated expression of the gene. Conclusions: Our findings suggest an epigenetic regulation of oncogenic overexpression of ITGB7 in MM cells, which could be critical in MM progression and an attractive therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。