Nuclear EGFR suppresses ribonuclease activity of polynucleotide phosphorylase through DNAPK-mediated phosphorylation at serine 776

核 EGFR 通过 DNAPK 介导的丝氨酸 776 磷酸化抑制多核苷酸磷酸化酶的核糖核酸酶活性

阅读:5
作者:Yung-Luen Yu, Ruey-Hwang Chou, Chia-Han Wu, Ying-Nai Wang, Wei-Jung Chang, Yen-Ju Tseng, Wei-Chao Chang, Chien-Chen Lai, Hong-Jen Lee, Longfei Huo, Chung-Hsuan Chen, Mien-Chie Hung

Abstract

Nuclear existence of epidermal growth factor receptor (EGFR) has been documented for more than two decades. Resistance of cancer to radiotherapy is frequently correlated with elevated EGFR expression, activity, and nuclear translocation. However, the role of nuclear EGFR (nEGFR) in radioresistance of cancers remains elusive. In the current study, we identified a novel nEGFR-associated protein, polynucleotide phosphorylase (PNPase), which possesses 3' to 5' exoribonuclease activity toward c-MYC mRNA. Knockdown of PNPase increased radioresistance. Inactivation or knock-down of EGFR enhanced PNPase-mediated c-MYC mRNA degradation in breast cancer cells, and also increased its radiosensitivity. Interestingly, the association of nEGFR with PNPase and DNA-dependent protein kinase (DNAPK) increased significantly in breast cancer cells after exposure to ionizing radiation (IR). We also demonstrated that DNAPK phosphorylates PNPase at Ser-776, which is critical for its ribonuclease activity. The phospho-mimetic S776D mutant of PNPase impaired its ribonuclease activity whereas the nonphosphorylatable S776A mutant effectively degraded c-MYC mRNA. Here, we uncovered a novel role of nEGFR in radioresistance, and that is, upon ionizing radiation, nEGFR inactivates the ribonuclease activity of PNPase toward c-MYC mRNA through DNAPK-mediated Ser-776 phosphorylation, leading to increase of c-MYC mRNA, which contributes to radioresistance of cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。