A 3-Dimensional Scaffolding System Recapitulates the Hierarchical Osteon Structure

三维支架系统重现骨单位的层次结构

阅读:6
作者:Xiheng Li, Yalu Sun, Shuangshuang Wang, Chao Si, Huen Li, Bei Chang

Abstract

The bone is composed of solid cortical bone and honeycomb-like trabecular bone. Although the cortical bone provides the substantial mechanical strength of the bone, few studies have focused on its regeneration. As the structural and functional units of the cortical bone, osteons play critical roles in bone turnover. Composed of osteocytes, lamellae, lacunocanalicular network, and Haversian canals, osteons exhibit a delicate and hierarchical architecture. Studies have attempted to reconstruct the osteonal structure with artificial approaches; however, hardly the four elements were recapitulated simultaneously. In this work, a series of bioengineering techniques, including electrospinning, micropatterning, and laser-directed microfabrication, were employed to develop a three-dimensional scaffolding system, which successfully recapitulated the osteon structure in vitro. The physiological morphology and bioactivity of osteocytes were emulated, the intercellular communications between osteocytes were identified, and the concentric lamellae and Haversian canals were simulated as well. This work constructed an in vivo-like platform for osteon study, providing convenience for exploring the interaction among the osteonal elements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。