DNA G-Quadruplexes Activate Heme for Robust Catalysis of Carbene Transfer Reactions

DNA G-四链体激活血红素,实现卡宾转移反应的强效催化

阅读:7
作者:Hanadi Ibrahim, Paul Mulyk, Dipankar Sen

Abstract

Guanine-rich single-stranded DNAs and RNAs that fold into G-quadruplexes (GQs) are known to complex tightly with FeII-heme and FeIII-heme (hemin), ubiquitous cellular cofactors. Heme-GQ (DNA) complexes, known as heme·DNAzymes, are able to utilize hydrogen peroxide as an oxidant to vigorously catalyze a variety of one-electron (peroxidase) and two-electron (peroxygenase) oxidation reactions. Herein, we show that complexes of FeII-heme with GQs also robustly catalyze a mechanistically distinct reaction, carbene transfer to an alkene substrate. Significant enhancements were seen in both reaction kinetics and product turnover (∼180) relative to disaggregated FeII-heme in the absence of DNA or in the presence of other DNA folds, such as single-stranded or double-stranded DNA. Heme binds to GQs by end-stacking. Simple, intramolecularly folded GQs are unable to provide a complexly structured "distal side" environment to the bound heme; therefore, such DNAzymes do not display significant product stereoselectivity. However, intermolecular GQs with multiple pendant nucleotides show increasing stereoselectivity in addition to their enhanced catalytic rates. These results recapitulate the unique functional synergy and highlight the surprising catalytic versatility of complexes formed between heme and DNA/RNA GQs. Our findings suggest that heme·DNAzymes and heme·ribozymes may prove to be useful reagents for carbon-carbon bond forming "green" reactions carried out in vitro and likely within living cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。