Functional dissection of an intrinsically disordered protein: understanding the roles of different domains of Knr4 protein in protein-protein interactions

内在无序蛋白质的功能解剖:了解 Knr4 蛋白质不同结构域在蛋白质-蛋白质相互作用中的作用

阅读:5
作者:Adilia Dagkessamanskaia, Fabien Durand, Vladimir N Uversky, Matteo Binda, Frédéric Lopez, Karim El Azzouzi, Jean Marie Francois, Hélène Martin-Yken

Abstract

Knr4, recently characterized as an intrinsically disordered Saccharomyces cerevisiae protein, participates in cell wall formation and cell cycle regulation. It is constituted of a functional central globular core flanked by a poorly structured N-terminal and large natively unfolded C-terminal domains. Up to now, about 30 different proteins have been reported to physically interact with Knr4. Here, we used an in vivo two-hybrid system approach and an in vitro surface plasmon resonance (BIAcore) technique to compare the interaction level of different Knr4 deletion variants with given protein partners. We demonstrate the indispensability of the N-terminal domain of Knr4 for the interactions. On the other hand, presence of the unstructured C-terminal domain has a negative effect on the interaction strength. In protein interactions networks, the most highly connected proteins or "hubs" are significantly enriched in unstructured regions, and among them the transient hub proteins contain the largest and most highly flexible regions. The results presented here of our analysis of Knr4 protein suggest that these large disordered regions are not always involved in promoting the protein-protein interactions of hub proteins, but in some cases, might rather inhibit them. We propose that this type of regions could prevent unspecific protein interactions, or ensure the correct timing of occurrence of transient interactions, which may be of crucial importance for different signaling and regulation processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。