miRNA-29a inhibits atherosclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway

miRNA-29a 通过 PI3K/AKT/mTOR 通路介导巨噬细胞自噬抑制动脉粥样硬化斑块形成

阅读:4
作者:Weihua Shao, Suxing Wang, Xiaoxi Wang, Lixia Yao, Xiaoye Yuan, Dai Huang, Bonan Lv, Yuquan Ye, Hongyuan Xue

Background

miR-29a plays a vital role in AS, but the relationship between the miR-29a-targeted PI3K signaling pathway and AS remains unclear. Therefore, this study was carried out.

Conclusion

MiR-29a elevation induces the increase of autophagy by down-regulating the PI3K/AKT/mTOR pathway in the progression of AS, indicating that miR-29a is a novel therapeutic strategy for AS.

Methods

Gene expression profiles from the GEO database containing AS samples were analyzed. ApoE-/- mice and RAW264.7 cells were treated with miR-29a negative control (NC), miR-29a mimic and miR-29a inhibitor to establish the AS model. Then MOVAT staining, TEM, Western blotting, and immunofluorescence staining were adopted for testing target proteins.

Results

DEGs were identified from GSE137578, GSE132651, GSE113969, GSE43292, and GSE97210 datasets. It was found that there were targeted binding sites between miR-29a and PIK3CA. Besides, GO and KEGG analysis demonstrated that autophagy was an enriched pathway in AS. Later, PPI network was depicted, and hub genes were then determined. The results revealed that miR-29a suppressed the areas of plaques and lesional macrophages, but had no impact on VSMCs. TEM results showed the organelles pyknosis of lesional macrophages damaged morphological changes. Furthermore, miR-29a amplified the M2-like macrophages but suppressed the polarization of M1-like macrophages in atherosclerotic plaques. According to mouse and RAW 264.7 cell experiments, miR-29a significantly inhibited the protein expressions of PI3K, p-PI3K, p-AKT, and p-mTOR, which were consistent with the increased expressions of autophagy-related proteins, Beclin 1 and LC3II. However, the miR-29a suppression exhibited the contrary results.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。