Quantification of ssDNA Scaffold Production by Ion-Pair Reverse Phase Chromatography

通过离子对反相色谱法定量 ssDNA 支架生产

阅读:7
作者:A Rita Silva-Santos, Sara Sousa Rosa, Marco P C Marques, Ana M Azevedo, Duarte Miguel F Prazeres

Abstract

DNA origami is an emerging technology that can be used as a nanoscale platform in numerous applications ranging from drug delivery systems to biosensors. The DNA nanostructures are assembled from large single-stranded DNA (ssDNA) scaffolds, ranging from hundreds to thousands of nucleotides and from short staple strands. Scaffolds are usually obtained by asymmetric PCR (aPCR) or Escherichia coli infection/transformation with phages or phagemids. Scaffold quantification is typically based on agarose gel electrophoresis densitometry for molecules obtained by aPCR, or by UV absorbance, in the case of scaffolds obtained by infection or transformation. Although these methods are well-established and easy-to-apply, the results obtained are often inaccurate due to the lack of selectivity and sensitivity in the presence of impurities. Herein, we present an HPLC method based on ion-pair reversed-phase (IP-RP) chromatography to quantify DNA scaffolds. Using IP-RP chromatography, ssDNA products (449 and 1000 nt) prepared by aPCR were separated from impurities and from the double stranded (ds) DNA byproduct. Additionally, both ss and dsDNA were quantified with high accuracy. The method was used to guide the optimization of the production of ssDNA by aPCR, which targeted the maximization of the ratio of ssDNA to dsDNA obtained. Moreover, ssDNA produced from phage infection of E. coli cells was also quantified by IP-RP using commercial ssDNA from the M13mp18 phage as a standard.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。