Integrative Analysis of Multi-Omic Data for the Characteristics of Endometrial Cancer

子宫内膜癌特征的多组学数据整合分析

阅读:9
作者:Tong Li, Zhijun Ruan, Chunli Song, Feng Yin, Tuanjie Zhang, Liyun Shi, Min Zuo, Linlin Lu, Yuhao An, Rui Wang, Xiyang Ye

Abstract

Endometrial cancer (EC) is a frequently diagnosed gynecologic cancer. Identifying reliable prognostic genes for predicting EC onset is crucial for reducing patient morbidity and mortality. Here, a comprehensive strategy with transcriptomic and proteomic data was performed to measure EC's characteristics. Based on the publicly available RNA-seq data, death-associated protein kinase 3, recombination signal-binding protein for the immunoglobulin kappa J region, and myosin light chain 9 were screened out as potential biomarkers that affect the EC patients' prognosis. A linear model was further constructed by multivariate Cox regression for the prediction of the risk of being malignant. From further integrative analysis, exosomes were found to have a highly enriched role that might participate in EC occurrence. The findings were validated by qRT-polymerase chain reaction (PCR) and western blotting. Collectively, we constructed a prognostic-gene-based model for EC prediction and found that exosomes participate in EC incidents, revealing significantly promising support for the diagnosis of EC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。