Sensing Cellular Metabolic Activity via a Molecular-Controlled Semiconductor Resistor

通过分子控制半导体电阻感测细胞代谢活动

阅读:4
作者:Ilina Kolker Baravik, Eyal Capua, Elena Ainbinder, Ron Naaman

Abstract

Over the last decade, we have developed a molecular-controlled semiconductor resistor (MOCSER) device that is highly sensitive to variations in its surface potentials. This device was applied as a molecular sensor both in the gas phase and in solutions. The device is based on an AlGaAs/GaAs structure. In the current work, we developed an electronic biosensor for real-time, label-free monitoring of cellular metabolic activity by culturing HeLa cells directly on top of the device's conductive channel. Several properties of GaAs make it attractive for developing biosensors, among others its high electron mobility and ability to control the device's properties by proper epitaxial growing. However, GaAs is very reactive and sensitive to oxidation in aqueous solutions, and its arsenic residues are highly toxic. Nevertheless, we have managed to overcome this inherent chemical instability by developing a surface-protecting layer using polymerized (3-mercaptopropyl)-trimethoxysilane (MPTMS). To improve cell adhesion and biocompatibility, the MPTMS-coated devices were further modified with an additional layer of (3-aminopropyl)-trimethoxysilane (APTMS). HeLa cells were found to grow successfully on these devices, and MOCSER devices cultured with these cells were stable and sensitive to cellular metabolic activity. The sensitivity of the MOCSER device results from the sensing of extracellular acidification in the microenvironment of the cell-MOCSER interspace. We have found that this sensitivity is maintained only when the device is partially covered with the cellular layer, whereas at full coverage the sensitivity is lost. This phenomenon is related to the negatively charged cellular membrane potentials that lead to a reduction in the channel's conductivity. We propose that the coated MOCSER device can be applied for real-time and continuous monitoring of cellular viability and activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。