Engineering BioBricks for Deoxysugar Biosynthesis and Generation of New Tetracenomycins

工程生物砖用于脱氧糖生物合成和新四霉素的生成

阅读:7
作者:Heli Tirkkonen, Katelyn V Brown, Magdalena Niemczura, Zélie Faudemer, Courtney Brown, Larissa V Ponomareva, Yosra A Helmy, Jon S Thorson, S Eric Nybo, Mikko Metsä-Ketelä, Khaled A Shaaban

Abstract

Tetracenomycins and elloramycins are polyketide natural products produced by several actinomycetes that exhibit antibacterial and anticancer activities. They inhibit ribosomal translation by binding in the polypeptide exit channel of the large ribosomal subunit. The tetracenomycins and elloramycins are typified by a shared oxidatively modified linear decaketide core, yet they are distinguished by the extent of O-methylation and the presence of a 2',3',4'-tri-O-methyl-α-l-rhamnose appended at the 8-position of elloramycin. The transfer of the TDP-l-rhamnose donor to the 8-demethyl-tetracenomycin C aglycone acceptor is catalyzed by the promiscuous glycosyltransferase ElmGT. ElmGT exhibits remarkable flexibility toward transfer of many TDP-deoxysugar substrates to 8-demethyltetracenomycin C, including TDP-2,6-dideoxysugars, TDP-2,3,6-trideoxysugars, and methyl-branched deoxysugars in both d- and l-configurations. Previously, we developed an improved host, Streptomyces coelicolor M1146::cos16F4iE, which is a stable integrant harboring the required genes for 8-demethyltetracenomycin C biosynthesis and expression of ElmGT. In this work, we developed BioBricks gene cassettes for the metabolic engineering of deoxysugar biosynthesis in Streptomyces spp. As a proof of concept, we used the BioBricks expression platform to engineer biosynthesis for d-configured TDP-deoxysugars, including known compounds 8-O-d-glucosyl-tetracenomycin C, 8-O-d-olivosyl-tetracenomycin C, 8-O-d-mycarosyl-tetracenomycin C, and 8-O-d-digitoxosyl-tetracenomycin C. In addition, we generated four new tetracenomycins including one modified with a ketosugar, 8-O-4'-keto-d-digitoxosyl-tetracenomycin C, and three modified with 6-deoxysugars, including 8-O-d-fucosyl-tetracenomycin C, 8-O-d-allosyl-tetracenomycin C, and 8-O-d-quinovosyl-tetracenomycin C. Our work demonstrates the feasibility of BioBricks cloning, with the ability to recycle intermediate constructs, for the rapid assembly of diverse carbohydrate pathways and glycodiversification of a variety of natural products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。