α-NiO/Ni(OH)2/AgNP/F-Graphene Composite for Energy Storage Application

α-NiO/Ni(OH)2/AgNP/F-石墨烯复合材料在储能中的应用

阅读:5
作者:Su Young Ryu, Michael R Hoffmann

Abstract

The α-NiO/Ni(OH)2/AgNP/F-graphene composite, which is silver nanoparticles preanchored on the surface of fluorinated graphene (AgNP/FG) and then added to α-NiO/Ni(OH)2, is investigated as a potential battery material. The addition of AgNP/FG endows the electrochemical redox reaction of α-NiO/Ni(OH)2 with a synergistic effect, resulting in enhanced Faradaic efficiency with the redox reactions of silver accompanied by the OER and the ORR. It resulted in enhanced specific capacitance (F g-1) and capacity (mA h g-1). The specific capacitance of α-NiO/Ni(OH)2 increased from 148 to 356 F g-1 with the addition of AgNP(20)/FG, while it increased to 226 F g-1 with the addition of AgNPs alone without F-graphene. The specific capacitance of α-NiO/Ni(OH)2/AgNP(20)/FG further increased up to 1153 F g-1 with a change in the voltage scan rate from 20 to 5 mV/s and the Nafion-free α-NiO/Ni(OH)2/AgNP(20)/FG composite. In a similar trend, the specific capacity of α-NiO/Ni(OH)2 increased from 266 to 545 mA h g-1 by the addition of AgNP(20)/FG. The performance of hybrid Zn-Ni/Ag/air electrochemical reactions by α-NiO/Ni(OH)2/AgNP(200)/FG and Zn-coupled electrodes indicates a potential for a secondary battery. It results in a specific capacity of 1200 mA h g-1 and a specific energy of 660 W h kg-1, which is divided into Zn-Ni reactions of ∼95 W h kg-1 and Zn-Ag/air reactions of ∼420 W h kg-1, while undergoing a Zn-air reaction of ∼145 W h kg-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。