Construction of Peptide Library in Mammalian Cells by dsDNA-Based Strategy

基于双链DNA的策略构建哺乳动物细胞肽库

阅读:5
作者:Weijun Su, Yi Wang, Siqi Zou, Yanjie Zhao, Yifan Li, Chunze Zhang, Xiaojing Guo, Shuai Li

Abstract

While different display technologies, represented by phage display, have been widely used in drug discovery, they still can hardly achieve function-based peptide screening, which in most cases is performed in mammalian cells. And most attempts to screen functional peptides with mammalian platforms utilized plasmids to store coding information. Our previous work established double-stranded DNAs (dsDNAs) as innovative biological parts to implement AND-gate genetic circuits in mammalian cells. In the current study, we employ dsDNAs with terminal NNK degenerate codons to implement AND-gate genetic circuits and generate peptide libraries in mammalian cells. This dsDNA-based AND-gate (DBAG) peptide library construction strategy is easy to perform, requiring only PCR reaction and cell transfection. High-throughput sequencing (HTS) and single-cell sequencing results revealed both peptide length and amino acid sequence diversity of DBAG peptide libraries. Moreover, as a feasibility test of this strategy, we identified an MDM2-interacting peptide by applying the DBAG peptide library to a mammalian cell-based two-hybrid system. Our work establishes dsDNAs with terminal degenerate codons as biological parts to build peptide libraries in mammalian cells, which may have great application potential in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。