Dysregulated insulin secretion is associated with pancreatic β-cell hyperplasia and direct acinar-β-cell trans-differentiation in partially eNOS-deficient mice

胰岛素分泌失调与部分 eNOS 缺陷小鼠的胰腺 β 细胞增生和直接腺泡-β 细胞转分化有关

阅读:4
作者:Michela Novelli, Matilde Masini, Cecilia Vecoli, Stefania Moscato, Niccola Funel, Anna Pippa, Letizia Mattii, Chiara Ippolito, Daniela Campani, Danilo Neglia, Pellegrino Masiello

Abstract

eNOS-deficient mice were previously shown to develop hypertension and metabolic alterations associated with insulin resistance either in standard dietary conditions (eNOS-/- homozygotes) or upon high-fat diet (HFD) (eNOS+/- heterozygotes). In the latter heterozygote model, the present study investigated the pancreatic morphological changes underlying the abnormal glycometabolic phenotype. C57BL6 wild type (WT) and eNOS+/- mice were fed with either chow or HFD for 16 weeks. After being longitudinally monitored for their metabolic state after 8 and 16 weeks of diet, mice were euthanized and fragments of pancreas were processed for histological, immuno-histochemical and ultrastructural analyses. HFD-fed WT and eNOS+/- mice developed progressive glucose intolerance and insulin resistance. Differently from WT animals, eNOS+/- mice showed a blunted insulin response to a glucose load, regardless of the diet regimen. Such dysregulation of insulin secretion was associated with pancreatic β-cell hyperplasia, as shown by larger islet fractional area and β-cell mass, and higher number of extra-islet β-cell clusters than in chow-fed WT animals. In addition, only in the pancreas of HFD-fed eNOS+/- mice, there was ultrastructural evidence of a number of hybrid acinar-β-cells, simultaneously containing zymogen and insulin granules, suggesting the occurrence of a direct exocrine-endocrine transdifferentiation process, plausibly triggered by metabolic stress associated to deficient endothelial NO production. As suggested by confocal immunofluorescence analysis of pancreatic histological sections, inhibition of Notch-1 signaling, likely due to a reduced NO availability, is proposed as a novel mechanism that could favor both β-cell hyperplasia and acinar-β-cell transdifferentiation in eNOS-deficient mice with impaired insulin response to a glucose load.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。