Insights into the fate of antimony (Sb) in contaminated soils: Ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation

深入了解受污染土壤中锑 (Sb) 的命运:老化对 Sb 流动性、生物利用度、生物可及性和形态的影响

阅读:5
作者:Stefania Diquattro, Paola Castaldi, Susie Ritch, Albert L Juhasz, Gianluca Brunetti, Kirk G Scheckel, Giovanni Garau, Enzo Lombi

Abstract

The effect of long-term ageing (up to 700 days) on the mobility, potential bioavailability and bioaccessibility of antimony (Sb) was investigated in two soils (S1: pH 8.2; S2: pH 4.9) spiked with two Sb concentrations (100 and 1000 mg·kg-1). The Sb mobility decreased with ageing as highlighted by sequential extraction, while its residual fraction significantly increased. The concentration of Sb (CDGT), as determined by diffusive gradients in thin films (DGT), showed a reduction in potential contaminant bioavailability during ageing. The DGT analysis also showed that Sb-CDGT after 700 days ageing was significantly higher in S1-1000 compared to S2-1000, suggesting soil pH plays a key role in Sb potential bioavailability. In-vitro tests also revealed that Sb bioaccessibility (and Hazard Quotient) decreased over time. Linear combination fitting of Sb K-edge XANES derivative spectra showed, as a general trend, an increase in Sb(V) sorption to inorganic oxides with ageing as well as Sb(V) bound to organic matter (e.g. up to 27 and 37% respectively for S2-100). The results indicated that ageing can alleviate Sb ecotoxicity in soil and that the effectiveness of such processes can be increased at acidic pH. However, substantial risks due to Sb mobility, potential bioavailability and bioaccessibility remained in contaminated soils even after 700 days ageing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。