Ilmenite-Grafted Graphene Oxide as an Antimicrobial Coating for Fruit Peels

钛铁矿接枝氧化石墨烯作为果皮抗菌涂层

阅读:5
作者:Piyumi Kodithuwakku, Dilushan Jayasundara, Imalka Munaweera, Randika Jayasinghe, Tharanga Thoradeniya, Achala Bogahawatta, K R Jaliya Manuda, Manjula Weerasekera, Nilwala Kottegoda

Abstract

Postharvest loss is a significant global challenge that needs to be urgently addressed to sustain food systems. This study describes a simple microwave-assisted green synthesis method in developing a nanohybrid material combining natural ilmenite (FeTiO3) and graphene oxide (GO) as a promising antimicrobial fruit peel coating to reduce postharvest loss. The natural ilmenite was calcined in an inert environment and was mixed with GO in a microwave reactor to obtain the nanohybrid. The nanohybrid was then incorporated into an alginate biopolymer to form the fruit coating. Microscopic images revealed successful grafting of FeTiO3 nanoparticles onto the GO sheets. Spectroscopic measurements of Raman, X-ray photoemission, and infrared provided insights into the interactions between the two matrices. The optical band gap calculated from Tauc's relation using UV-vis data showed a significant reduction in the band gap of the hybrid compared to that of natural ilmenite. The antimicrobial activity was assessed using Escherichia coli, which showed a substantial decrease in colony counts. Bananas coated with the nanohybrid showed a doubling in the shelf life compared with uncoated fruits. Consistent with this, the electronic nose (E-nose) measurements and freshness indicator tests revealed less deterioration of the physicochemical properties of the coated bananas. Overall, the results show promising applications for the ilmenite-grafted GO nanohybrid as a food coating capable of minimizing food spoilage due to microbial activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。